If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+18x+49=0
a = -16; b = 18; c = +49;
Δ = b2-4ac
Δ = 182-4·(-16)·49
Δ = 3460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3460}=\sqrt{4*865}=\sqrt{4}*\sqrt{865}=2\sqrt{865}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{865}}{2*-16}=\frac{-18-2\sqrt{865}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{865}}{2*-16}=\frac{-18+2\sqrt{865}}{-32} $
| 24/6x=2 | | F(x)=x^2+6x+27 | | 21/u=7 | | 46+4x=-6x76 | | 6(-8z+26-z)+2=4(z+3) | | 464x=-6x76 | | 60=69-h | | Q=38700-2p^2 | | 141=2x+17 | | 3.3x=28.04 | | 16=4-2(x+2 | | z-74=+19 | | z-(9z+26)=4(z+3) | | 3x=9-4x-2 | | 24/2n=4 | | 3n=1/2 | | t-19=-46 | | 18z-z-8z-8z+1=11 | | 9d-12=3d+21 | | 3(2v+8)=6 | | 18d-5d-4d+2=11 | | 1.3+y=5.7 | | 3-4x=5x-24 | | 4p-3p-p+p=15 | | 2x+838=1516 | | 7v-4v-v=6 | | 200=11+y | | 2/3x-1/5x=x+1 | | 14+c=28 | | u-u+2u-1=15 | | 3/4x-7=68 | | a+91=115 |